Current Students

Yusuf Adeshina

Protein-RNA interactions, as drug targets, are interesting and at the same time challenging. The interface of these interaction sites are different from other conventional drug target both physico-chemically and geometrically. That's why my research is focused on using non-traditional approach for the search of potential inhibitors of these targets. To be specific, my research is focused on developing a computational algorithmic pipeline that combines generation of in-silico library of chemical compounds -that are biased towards binding RNA-binding proteins- with ligand-based virtual screening and experimental validation in an attempt to find potent inhibitors of Protein-RNA interaction sites.

Angelo Andres

Signal transduction pathways of human cells are vital for intercellular signaling and processes such as cellular death (apoptosis). These pathways are initiated by cell surface receptor peptides with unique transmembrane sequences that allow for their insertion into the membrane of the cell. By creating artificial cell surface receptors, we seek to control specific signal transduction pathways involved in cellular dysfunction and apoptosis. My research focuses on the synthesis and evaluation of synthetic transmembrane (TM) peptides and their spontaneous insertion into the cellular membrane. Development of synthetic TM peptides will enable the study of artificial receptors and their potential role in modulating signal transduction pathways.

NIH Trainee

Tauopathies are the group of neurodegenerative diseases that are characterized by the improper aggregation of the microtubule-associated protein tau. Through proteolytic degradation, recent work has found different structural conformation of tau, “tau strains”, isolated from human brain and animal model. However, the role of these different conformations and how they react to available therapeutics remains unknown. By using the nematode C. elegans, we aim to generate tau aggregates in vivo and compare them to aggregates formed in vitro and in human brain tissue. My research focuses on the identification and characterization of the different tau conformations or strains through the use of analytical methods.   

Andie Cassity

My research focuses on the development of novel biological probes. We are particularly interested in utilizing sultam moieties, as they are not found in nature and posses unique chemical properties. We strive to develop Michael accepting sultam scaffolds for the covalent modification of cysteine-activated enzymes. We believe our probes will be of great use in studying cell-signaling processes critical for human health, such as ubiquitination and phosphorylation.

Zech De Silva
NIH Trainee

Research in the Farrell lab is focused on better understanding and manipulating immunological machinery, with special attention given to the role carbohydrates play in these mechanisms. My current project has me synthesizing sialic acid containing oligosaccharides for use with natural killer cells and B cells to modulate their activity. Knowledge gained from this project will be applied to hopefully develop potential immunotherapies.


Gihan Dissanayake

My PhD research involves design, synthesis, and reactivity profiling studies for the investigation of diverse macrocycles bearing electrophilic warheads. Our interest in the synthesis of these macrocycles was originated from the naturally occurring bioactive polyketide macrolides possessing 1,3 anti-diol subunits. Our current efforts towards the synthesis of these macrocycles involves pot-economical and library amenable approaches which utilize (i) differentially-protected polyol subunits to selectively generate various ring sizes employing selective deprotection and coupling reactions; (ii) chemoselective derivatization of the stereogenic carbinol centers that enable functional group and stereochemical attenuation; and (iii) late-stage variable warhead installation offering a wide range of attenuated C-, S-, and P-based electrophilic warheads. Reactivity profiling studies of all systems are being carried out in order to elucidate structure-reactivity patterns to further our understanding of complex biological pathways involved in human health and disease.

Kiersten Jade Johnson Garcia

I work in the Michael Johnson lab in the Chemistry Department. Our main focus is looking at how diseased states of the brain affect the chemicals in the brain. We use fast scan cyclic voltammetry to probe levels of dopamine, serotonin, and hydrogen peroxide in different models of disease in rats, mice, and zebrafish. My project focuses on in vivo and ex vivo detection of dopamine and hydrogen peroxide and correlating that with behavioral measurements in chemotherapy treated rats. Looking at both the neurochemical and behavioral sides allows us to better understand chemotherapy induced cognitive impairment (chemobrain). We also investigate some rescue methods such as novel synthetic compounds and commonly used drugs for other conditions. We are expanding into looking that the transcritome (using RNA seq) of chemotherapy treated mice. All of these different experiments allow us to understand a multifaceted​disease that does not look the same in all patients.

NIH Trainee

I am a graduate student in the Department of Chemistry at KU, and am a member of the Blakemore laboratory. In my research, I am focusing on the preparation and study of metal complexes that undergo light-driven carbon monoxide (CO) release. CO is a toxic gas when released in an uncontrolled fashion, but when released in a controlled manner CO has been implicated in cellular signaling pathways, has anti-inflammatory properties, and has anti-apoptotic effects. I am working on mechanistic studies of light-driven CO release in order to provide design rules for useful therapeutics capable of releasing CO in vivo. [Mn(CO)3] complexes are my current target compounds, as we have found that they can be readily modified to release CO in the right place and at the right time. In my work, I use a variety of techniques available at KU, including ultrafast laser spectroscopy in collaboration with Prof. Chris Elles. Additionally, our team recently carried out studies of my compounds with time-resolved X-ray absorption spectroscopy at Argonne National Laboratory, providing new insight into the transient intermediates involved in CO release. 

Latavia Keyana Hill
NIH Trainee

AraC transcriptional activators are found in 70% of sequenced bacterial genomes and regulate genes involved in metabolism, stress response, and virulence. Our lab focuses on RhaR and RhaS, two AraC family members found in E.coli. Structural analysis obtained from the crystal structure of the RhaR N-terminal domain and a full-length RhaR computational model suggests a mechanism of allosteric signaling between the N-terminal domain and DNA-binding domain in RhaR. In several other AraC family transcriptional activators, it is hypothesized that interdomain contacts are important for the protein’s transition to and from its activating to non-activating state, controlling the protein’s allosteric regulation​​ My dissertation research in particular focuses on testing the importance of interdomain contacts in RhaR and ToxT, another AraC family member found in V. cholerae.​​

David Ingham

The microtubule-associated protein tau promotes the stabilization of the axonal cytoskeleton in neurons; however, in disease tau has been found to dissociate from microtubules and form pathological aggregates. These aggregates are a common hallmark of a group of neurodegenerative diseases known as tauopathies, including Alzheimer’s disease. My research focuses on identifying natural products isolated from the fungi Aspergillus nidulans​ that are able to inhibit in vitro tau aggregation as well as further modify and characterize derivatives with the hope of increasing potency.

Stephanie Johnson
NIH Trainee

In the Berkland laboratory, my studies focus on synthesizing novel antigen-toxin conjugates to selectively target insulin-specific B cells (IBCs) for the treatment of Type I Diabetes (T1D). B cell depletion using Rituximab has emerged as a viable treatment for T1D. Although effective in humans, the risks associated with global B cell deletion limit clinical use in juvenile T1D. While autoreactive B lymphocytes play a critical role as producers of pathogenic autoantibodies in other autoimmune disorders, in T1D these autoreactive cells appear to function differently. It has been shown that autoantibodies are the best predictors of development of T1D, but interestingly, secreted antibody is dispensable, indicating that B cells may instead contribute to disease by antigen presentation and/or cytokine production. Deactivating or deleting IBCs may offer a safe intervention for these patients. Our strategy is to identify molecular constructs that selectively bind to IBCs and deliver a toxic payload, thereby killing the cells.

Venom is a complex mixture of toxins delivered by specialized systems for predation, defense, or competition. The study of venom presents an interesting challenge to chemists and biologists alike, ranging from drug discovery and protein function to evolutionary and ecological biology. The earliest diverging venomous lineage, the cnidarians, are also some of the most poorly understood. Cnidaria include all animals with stinging cells, such as jellyfish, sea anemones, corals, and hydroids. Despite being major members of all major marine and some freshwater systems, little is known about their venom composition or how their venoms are used in an environmental context.  Currently, my research focuses on the evolution of venom genes within cnidarians, and I use molecular, genomic, and phylogenetic techniques to understand​ venom function across the complex life history of several species. Outside of my research, I am an active participant in outreach efforts within our graduate student organization, including working with the Girl Scouts of Northeast Kansas and Northwest Missouri and the National Center for Science Education.

Emily A. Kurfman
NIH Trainee

Dynorphin A (Dyn A) is an opioid peptide that is found in nervous system tissue. The peptide is metabolized to smaller peptide fragments that have lesser-known and different activities. It is necessary to separate and detect these peptides in biological samples in order to characterize how the peptides behave in vivo. Dyn A binds the kappa opioid receptor and has been shown to be involved in both peripheral pain and drug addiction. Therefore, better methods for determining Dyn A and its metabolites in vivo will help in our understanding of the neurochemistry of drug addiction and withdrawal, which are major societal problems. My research currently focuses on developing a capillary electrophoresis-electrospray ionization mass spectrometry method for separating and detecting dynorphin peptides. I will then develop a microchip electrophoresis-miniaturized mass spectrometry system combined with on-line microdialysis sampling to monitor dynorphin transport and metabolism in rat models. This will provide a better understanding of the role of dynorphin peptides and dynorphin analogs in drug addiction and pain.

Cindy Yang Ly

Currently in Dr. Davido’s lab my research focuses on understanding virus-host interactions in the herpes simplex virus 1 (HSV-1) life cycle. HSV-1 is a common human pathogen infecting about 80% of the world’s population. The virus establishes a life-long latency in the neuronal cells and upon activation can cause a variety of diseases such as cold sores, ocular infections, and encephalitis. One major area of interest is to delineate mechanisms by which a major viral regulatory factor destabilizes host cell proteins while contributing to viral replication and pathogenesis. Another part of my thesis will focus on identifying novel compounds that impair HSV-1 growth. Aside from research, an important goal of mine is to continuously encourage and expand the sciences within the community. I actively participate in outreach programs that entail teaching young students about different science topics to advocating minorities and woman to pursue science in higher education.

Jaycee Mayfield
NIH Trainee

Cytochrome P450 and other non-heme iron containing enzymes are known to oxidize strong C-H bonds through a mechanism involving an essential hydrogen atom transfer (HAT) step that is possible due to the activation of O2. The proposed catalytic cycle of Cyt P450 and isolation of the Fe(IV)-oxo intermediate involved in HAT has led researchers to use Fe(IV)-oxo and Mn(IV)-oxo model complexes to study the factors that influence reactivity. The Jackson group has investigated the steric and electronic contributions to the reactivity of a series of synthetic, pentadentate Mn(IV)-oxos. With my research in the Jackson group, I aim to take this a step further by looking at a different scaffold to support these reactive centers. I plan to utilize manganese compounds containing trigonal ligands (containing four binding sites) to gain a deeper understanding of the influence of the ligand field on reactivity. A variety of ligand derivatives can be obtained through synthetic manipulation of a commercially available tetradentate ligand, tren, and their corresponding Mn(II) adducts can be made using common metalation techniques in our lab. Treating the Mn(II) species with an external oxidant can form the reactive Mn(IV)-oxo intermediate, which can be used in HAT reactivity studies with C-H bond containing substrates. Through the use of synthesis, spectroscopic techniques, and theoretical methods, we can explore how subtle ligand perturbations modulate the reactivity of tetradentate systems and make comparisons to the previously studied pentadentate systems. Understanding how the ligand field influences reactivity will provide insight into the structural and electronic effects present in the active sites of metalloenzymes.  

Yssa Rodriguez

Research in my lab focuses on diabetic peripheral neuropathy. Previous results have shown that heat shock protein (HSP) 90 inhibitors improve neuronal function in diabetic mice. Diabetically-stressed cells seem to change the composition of the Hsp90 complex and have no effect on non-diabetic control mice. KU-596, an Hsp90 inhibitor, improves mitochondrial bioenergetics and decreases oxidative stress in diabetic sensory neurons. We hypothesize that diabetes changes the Hsp90 complex, which helps KU-596 discern affected complexes from house-keeping proteins. My project uses biotinylated KU-596 as an affinity probe to pull down the Hsp90 complex and identifying co-chaperones in diabetic and non-diabetic samples. Hsp90 and its co-chaperons are promising targets for the development of both neuroprotective and anti-cancer agents.

Patrick Andrew Ross
NIH Trainee

My research focus encompasses the interactions between proteins and carbohydrates in pathogenesis. Carbohydrate-protein interactions are implemented in the initiation and propagation of many cancers and infectious diseases.  For example, numerous viruses utilize the interaction between carbohydrates and proteins to bind to the outside of host cells, thus initiating infection. My work aims to develop a new way to treat influenza with the use of novel compounds that concomitantly bind to the hemagglutinin protein on the Influenza envelope and recruit the immune system (i.e., antibodies) to neutralize the virus. From our work, we aim to provide a new strategy to treat influenza in a manner that would target a wide breath of Influenza strains.

Kelci Schilly

Alzheimer’s disease (AD) is a devastating condition about which much is still not understood. It is believed that during AD, β-amyloid plaques activate microglia, the immune cells of the brain, to produce cytotoxic molecules such as reactive nitrogen and oxygen species (RNOS), thereby inducing neurodegeneration. In addition, analysis of AD brain tissue has shown increased protein nitration that is indicative of peroxynitrite-related activity. An effective method for detecting these RNOS species will be beneficial to better understanding the balance between oxidants and antioxidants that affects neurodegenerative disease states. The goal of my project in the Lunte group is to develop a microchip electrophoresis with electrochemical detection method to detect nitric oxide and peroxynitrite directly in microglial cells that have been stimulated by various inflammatory agents. This method will ultimately allow for the individual analysis of microglia of different phenotypes in order to probe RNOS production from each type of cell. This will help us to better understand the origin and role of different substances in the development of the inflammatory response in the brain that can lead to protein nitration and cell death.

Katelyn Soules

Chlamydia trachomatis leading cause of infectious blindness worldwide, as well as the most common sexually transmitted infection in the United States. Despite its impact on public health, and because of its obligate intracellular nature, there are still many gaps in our understanding of the basic biology of the organism. One of my research focuses is on the characterization of the role and mechanism of activation of specific transcription and sigma factors in Chlamydia. Additionally, I am testing novel synthetic compounds for use as Chlamydia-specific antibiotics targeting an enzyme in the futalosine pathway for menaquinone synthesis.

Viena Thomas

Advancing small molecule discovery for the identification of covalent modulators that can further our understanding of complex biochemical is the aim of this project. In particular, we aim to design, synthesize, and develop electrophilic scaffolds as potential small molecule modulators of protein function. Naturally occurring disulfides are a particular type of electrophilic chemotype that exists within a number of bioactive natural products and peptides. In proteins, these privileged architectures have innate properties that improve both chemical and biological stability, contribute to maintaining native structure even under extreme environments, and play a role in the regulation of protein activity. These properties have greatly enhanced their potential for probes design that can ultimately lead to drug candidates

Yuwen Yin

Cell-surface receptors (transmembrane receptors), are receptors that are anchored in the cell membranes and composed of three domains: extracellular domain, transmembrane domain and intracellular domain. By binding to ligands at the extracellular domain, it transduces multiple signaling cascades inside the cells. Mutations that inactivate cell surface receptors cause a wide range of cellular dysfunction. When the receptor is damaged by mutation, few non-genetic options exist to reactivate signaling pathways. Our team is working on synthesis of peptides that can mimic the biological functions of normal cell membrane receptors. In this project, we are hoping to obtain the first synthetic cell surface receptor that works effectively in activating signal transduction pathway.

One of 34 U.S. public institutions in the prestigious Association of American Universities
44 nationally ranked graduate programs.
—U.S. News & World Report
Top 50 nationwide for size of library collection.
5th nationwide for service to veterans —"Best for Vets: Colleges," Military Times
KU Today